# 激光熔覆原位自生 Cr<sub>x</sub>S<sub>y</sub>/Ni 基复合涂层的微观组织 和摩擦磨损性能

# 孙荣禄1,2 牛 伟1 雷贻文1 唐 英1

(1天津工业大学机械工程学院,天津 300387; 2天津市现代机电装备技术重点实验室,天津 300387)

**摘要** 以 Ni60+33%Ni/MoS<sub>2</sub>(质量分数)混合粉末为熔覆材料,在 H13 钢表面进行了激光熔覆试验,利用光学显微镜(OM)、扫描电子显微镜(SEM)、能谱分析仪(EDS)和 X 射线衍射仪(XRD)等对激光熔覆层的微观组织进行了 分析,测试了激光熔覆层的摩擦磨损性能。结果表明,激光熔覆层的组织是在 γ-Ni 树枝晶和 γ-Ni+MoNi<sub>4</sub> 共晶的 基体上分布着 Cr<sub>x</sub>S<sub>y</sub> 颗粒。激光熔覆过程中原位自生的 Cr<sub>x</sub>S<sub>y</sub> 颗粒呈近球状,尺寸在 5~20 μm 之间,尺寸较大的 颗粒多分布于熔覆层的上部,尺寸较小的颗粒多分布于熔覆层的中下部。由于 Cr<sub>x</sub>S<sub>y</sub> 的减摩作用,熔覆层的摩擦 系数明显低于 Ni60 熔覆层的摩擦系数,但耐磨性能有所降低。

关键词 激光技术;激光熔覆;原位自生;Cr<sub>x</sub>S<sub>y</sub>/Ni基复合涂层;摩擦磨损性能
 中图分类号 TG456.7 文献标识码 A doi: 10.3788/CJL201340.1003005

# Microstructure and frictional wear Properties of Laser Clad in Situ $Cr_xS_y/Ni$ Composite Coating

Sun Ronglu<sup>1,2</sup> Niu Wei<sup>1</sup> Lei Yiwen<sup>1</sup> Tang Ying<sup>1</sup>

<sup>1</sup> School of Mechanical Engineering, Tianjin Polytechnic University, Tianjin 300387, China

(2 Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tianjin 300387, China

**Abstract**  $Cr_x S_y/Ni$  coating is prepared on H13 steel by laser cladding using powder mixture of NiCrBSi+33% Ni/ MoS<sub>2</sub> (mass fraction). The microstructure of the coating is examined using optical microscope (OM), scanning electronic microscope (SEM), energy dispersive spectrometer (EDS), and X-ray diffractor (XRD). The frictional wear properties of the coating are tested. The results show that the coating consists of  $Cr_x S_y$  particles distribute in  $\gamma$ -Ni dentrites and  $\gamma$ -Ni+MoNi<sub>4</sub> eutectics matrix. The *in situ* formed  $Cr_x S_y$  particles appear quasi-spherical shape, with size of  $5 \sim 20 \ \mu$ m. The relatively larger particles are mainly distributed in the upper layer of the coating and the smaller particles are mainly distributed in the middle and bottom layer of the coating. Due to the lubrication of  $Cr_x S_y$ , the friction coefficient of the *situ* formed  $Cr_x S_y/Ni$  self-lubricating coating is significantly lower than that of laser clad NiCrBSi coating. However, its wear resistance slightly decreases.

Key words laser technique; laser cladding; *in situ* formed;  $Cr_x S_y/Ni$  composite coating; frictional wear property OCIS codes 140.3470; 140.3390; 310.1515

# 1 引

言

随着现代宇航工业、原子能工业及军工技术的 发展,要求某些相对运动的零部件能长时间工作在 高温、高真空、强腐蚀及强辐射等特殊工况下。在这 样苛刻的条件下,常规润滑油和润滑脂不能满足要 求。激光熔覆金属基自润滑复合涂层兼具金属基体 的高强度、高韧性和固体润滑剂的减摩性能,能满足 某些特殊工况下润滑的要求。已有的研究表明,激 光熔覆金属基自润滑复合涂层的摩擦磨损行为取决 于金属基体的成分、组织以及润滑剂的种类、体积分数、大小和分布等。Ni 基合金是目前使用最广泛的基体材料,而二硫属化合物<sup>[1-5]</sup>、六方 BN<sup>[6-8]</sup>、氟化钙<sup>[8-11]</sup>等常作为固体润滑剂使用。如 Yang 等<sup>[1-2]</sup>在 0Cr18Ni9 不锈钢表面激光熔覆 NiCr/Cr<sub>3</sub>C<sub>2</sub>-30%WS<sub>2</sub> 自润滑涂层,并与 NiCr/Cr<sub>3</sub>C<sub>2</sub> 涂层进行了比较。结果表明,NiCr/Cr<sub>3</sub>C<sub>2</sub> 涂层的组织由 Cr<sub>7</sub>C<sub>3</sub> 相和  $\gamma$ -(Fe,Ni)/Cr<sub>7</sub>C<sub>3</sub> 共晶组成,而 NiCr/Cr<sub>3</sub>C<sub>2</sub>-30%WS<sub>2</sub> 涂层的组织由 Cr<sub>7</sub>C<sub>3</sub>、 $\gamma$ -(Fe,Ni)、

收稿日期: 2013-04-19; 收到修改稿日期: 2013-05-17

基金项目:天津市应用基础及前沿技术研究计划(11JCZDJC21400)、教育部博士点基金(20091201110002)

作者简介:孙荣禄(1964-),男,教授,主要从事激光材料加工技术方面的研究。E-mail: rlsun@tjpu.edu.cn

(Cr,W)C 及少量 WS2 和 CrS 组成(在激光熔覆过 程中WS。发生了分解和氧化),在室温、300 ℃和 600 ℃下,NiCr/Cr<sub>3</sub>C<sub>2</sub>-30%WS<sub>2</sub> 涂层的摩擦系数均 小于 NiCr/Cr<sub>3</sub>C<sub>2</sub> 涂层的摩擦系数。Wang 等<sup>[3]</sup> 采 用 YAG 激光器在 Fe-0. 45C-0. 3Si-0. 6Mn 钢表面 熔覆 Ni 基 WS, 涂层,为防止激光熔覆过程中 WS, 的分解和氧化,采用高能球磨技术制备纳米 Ni 包 WS2 粉末,结果表明:激光熔覆 Ni60-WS2 涂层的摩 擦系数(0.36)比 Ni60 涂层(0.5~0.6)低,并目抗磨 损能力也比 Ni60 涂层高 3 倍。Liu 等<sup>[9]</sup>在 γ-TiAl 合金表面激光熔覆 Ni-Cr-C-CaF<sub>2</sub> 自润滑涂层,由于 CaF<sub>2</sub>的熔点和密度较低,且与金属基体相容性较 差,CaF2在一定程度上发生了上浮、分解和蒸发。 Liu 等<sup>[10-11]</sup>的进一步研究表明,使用 Ni-P 化学镀 包覆 CaF<sub>2</sub> 的方法,可以有效改善 CaF<sub>2</sub> 与金属基体 的润湿性,并降低其在激光辐照时的分解和蒸发程 度, 使涂层具有更好的自润滑性能和耐磨性能。

综上所述,激光熔覆自润滑涂层材料广泛,且不 受通常的冶金热力学条件限制。但是,由于激光熔 覆加热温度高,加之固体润滑剂的热稳定性差,在激 光熔覆过程中大部分固体润滑剂将发生分解和蒸 发,只有少量润滑剂保留在涂层中,大大降低了涂层 的自润滑性能。尽管人们采取了对固体润滑剂粉末 进行包覆处理<sup>[3,7,10-11]</sup>、优化激光熔覆工艺参数<sup>[9]</sup>等 措施,但这些措施只能在一定程度上降低润滑剂的 分解和蒸发,与期望的效果尚存在差距。

本试验通过熔覆材料设计,利用激光熔覆过程 中熔覆材料组元S与Cr之间的化学反应,在熔覆层 中原位自生Cr<sub>x</sub>S<sub>y</sub>润滑相。该方法不仅解决了固体 润滑剂在激光辐照加热过程中的分解和蒸发而引起 的失效问题,而且由于固体润滑剂是激光熔覆过程 中形成的热力学稳定相,具有与基体金属相容性好 的特点,能更好地发挥润滑剂的减摩作用。

# 2 试验材料及方法

基材选用 H13 钢,试样尺寸为 50 mm×20 mm× 20 mm,待 熔 覆 表 面 经 磨 削 加 工,粗 糙 度 Ra =0.2  $\mu$ m,预置粉末前用 300<sup>#</sup>金相砂纸打磨,并用丙 酮清洗。熔覆材料选用 Ni60+33%Ni/MoS<sub>2</sub>(Ni 包 MoS<sub>2</sub>)的混合粉末,其中 Ni60 合金粉末的化学成分 (质量分数,%)为: 17. 0Cr, 3. 5B, 4. 0Si, 1. 0C, <12Fe,其余为 Ni,粒度为-140~+320 目。Ni 包 MoS<sub>2</sub> 粉末中 Ni 与 MoS<sub>2</sub> 的质量比为 3:1,粒度为 -200 目。将熔覆材料混合均匀后,采用化学粘结 法预置于基材表面,预置厚度为1.0 mm。

激光熔覆试验采用 TJ-HL-T5000 型 5 kW 横 流 CO<sub>2</sub> 激光器,经对不同工艺参数下熔覆层成形质 量的对比分析,确定优化工艺参数为:激光功率 P=2 kW,光斑直径 D=3 mm,扫描速度 v=5 mm/s。

将多道搭接的激光熔覆试样表面磨平,用线切 割机切成 25 mm×7 mm×7 mm的长方体试样,采 用 M-200 型磨损试验机测试激光熔覆层的摩擦磨 损性能。对磨轮材料为 GCr15 淬火钢,直径 d =43.8 mm。摩擦工作参数为:载荷 F = 50 N,转速 r = 200 r/min,摩擦时间 t = 30 min。利用下列公式 计算磨损体积:

$$\Delta V = L_0 \left[ R^2 \arcsin\left(\frac{b}{2R}\right) - \frac{b}{2} \sqrt{R^2 - \left(\frac{b}{2}\right)^2} \right] \approx \frac{L_0 b^3}{12R},\tag{1}$$

式中 $L_0 = 7 \text{ mm}$ ,为磨损试样的宽度;R = 21.9 mm,为对磨轮半径;b为磨痕宽度(采用读数显微镜进行测量)。

### 3 试验结果及分析

#### 3.1 激光熔覆层的微观组织结构

图 1 为 Ni60+33% Ni/MoS<sub>2</sub> (质量分数)激光 熔覆层 X 射线衍射(XRD)图谱。可见,激光熔覆层 由  $\gamma$ -Ni、Cr<sub>x</sub>S<sub>y</sub>、MoNi<sub>4</sub>等相组成。与试验用熔覆材 料相比,熔覆层中出现了 Cr<sub>x</sub>S<sub>y</sub>和 MoNi<sub>4</sub>等新相, 而未检测到 MoS<sub>2</sub>相。这表明在激光熔覆过程中 MoS<sub>2</sub>发生了分解,分解出的 S 与 Cr 发生化学反应 形成了 Cr<sub>x</sub>S<sub>y</sub>型化合物,分解出的 Mo 与 Ni 形成了 MoNi<sub>4</sub>金属间化合物。

图 2(a)为单道激光熔覆层横截面形貌照片。 可见,激光熔覆层内部致密,无气孔和裂纹等缺陷,



图 1 Ni60+33%Ni/MoS<sub>2</sub> 激光熔覆层 XRD 图谱 Fig. 1 XRD spectrum of Ni60+33%Ni/MoS<sub>2</sub> coating 基材表层发生了少量熔化,与熔覆层之间形成了良 好的冶金结合。图 2(b)~(d)为激光熔覆层由表及 里的光学显微镜(OM)组织照片。激光熔覆层的组 织由树枝晶、树枝晶间的共晶和近球状颗粒组成,但 不同区域树枝晶的形态以及近球状颗粒的尺寸存在 一定的差别。由于激光熔池表层冷却速度快,具有 很大的过冷度,因而形成细小的近等轴状树枝晶[图 2(b)]。随表层细晶区的形成,激光熔池的冷却速 度变缓,过冷度减小,形核率降低,树枝晶生长充分, 因而在熔覆层中部形成较粗大的树枝晶[图 2(c)]。 在激光熔池底部,由于垂直基材的方向散热最快,树 枝晶呈定向生长的柱状晶形态。近球状颗粒的尺寸 在 5~20 μm 之间,其中尺寸较大的颗粒多分布于 熔覆层的上部,而尺寸较小的颗粒多分布于熔覆层 的中下部。这表明近球状颗粒的密度小于 Ni60 合 金的密度,在激光熔池中存在上浮倾向。根据 Stokes 定律,颗粒在熔池中上浮的速度为

$$v = \frac{2}{9}gR^2 \frac{\rho_1 - \rho_p}{\eta}, \qquad (2)$$

式中g为重力加速度;R为颗粒的半径; $\rho_l$ 为液体的 密度; $\rho_p$ 为颗粒的密度; $\eta$ 为液体的粘度。

由(2)式可以看出,颗粒在熔池中上浮的速度与 颗粒的半径平方成正比,因而尺寸大的颗粒比尺寸 小的颗粒上浮速度快,多分布在熔覆层的上部。



图 2 激光熔覆层横截面形貌和 OM 组织照片。(a)横截面形貌;(b)表层;(c)中间层;(d)底层 Fig. 2 Cross-section morphology and OM micrograph of the laser clad coating. (a) Cross-section morphology; (b) surface layer;(c) middle layer;(d) bottom layer



图 3 近球状颗粒的(a)SEM 照片及(b)EDS 图谱 Fig. 3 (a) SEM micrograph and (b) EDS spectrum of quasi-spherical particle

1003005-3

图 3 为激光熔覆层中近球状颗粒扫描电子显微 镜(SEM)照片及能谱分析仪(EDS)图谱。可见,近 球状颗粒的成分主要为 S 和 Cr,并含有一定量的 Mo、Fe 和 Ni 元素。对不同颗粒成分定量分析结果 表明,S 含量在 35.62% ~ 54.66%(原子数分 数,%),Cr 含量在 35.34% ~ 54.53%,Mo 含量在 2.79% ~ 6.77%,Fe 含量在 1.24% ~ 4.68%,Ni 含 量在 0.89% ~ 2.92%。

图 4 为激光熔覆层中树枝晶和共晶组织高倍 SEM 照片,SEM 和 EDS 分析树枝晶(A 点)的成分 (原子数分数,%)为 61.98Ni,20.13Fe,12.62Cr, 2.24Si和 3.03Mo。共晶组织中亮衬度相(B 点)的 成分(原子数分数,%)为 45.13Ni,20.20Mo, 24.34Fe,6.13Cr,3.21Si,0.98S;暗衬度相(C 点)的 成分(原子数分数,%)为 70.59Ni,22.11Fe, 3.41Cr,1.63S,1.65Si和 0.61Mo。



图 4 树枝晶和共晶组织 SEM 照片 Fig. 4 SEM micrograph of dentrites and eutectics

综合上述 XRD 和 EDS 分析结果可以初步确 定,熔覆层中近球状颗粒为 Cr 与 S 元素形成的 Cr<sub>x</sub>S<sub>y</sub> 不定比化合物,树枝晶为 Fe、Cr、Si、Mo 等元 素溶于 Ni 中形成的 γ-Ni 固溶体,共晶组织由 γ-Ni 固溶体和 MoNi<sub>4</sub> 金属间化合物组成。

### 3.2 激光熔覆层的摩擦磨损性能

图 5(a)为基材 H13 钢、Ni60 和 Ni60+Ni/MoS<sub>2</sub> 激光熔覆层摩擦系数随时间的变化曲线。可见,H13 钢的摩擦系数在 0.65~0.75 之间,Ni60 激光熔覆层 的摩擦系数在 0.20~0.50 之间,Ni60+Ni/MoS<sub>2</sub> 激 光熔覆层的摩擦系数在 0.10~0.22 之间。磨损体积 测试表明[图 5(b)],在相同摩擦工作参数下,Ni60 激 光熔覆层的磨损体积为 H13 钢的 2.3%,Ni60+Ni/ MoS<sub>2</sub> 激光熔覆层的磨损体积为 H13 钢的 8.4%。由 上述试验结果可以看出,Ni60+Ni/MoS<sub>2</sub> 激光熔覆层 具有低而平稳的摩擦系数,但耐磨性能较 Ni60 激光 熔覆层有所下降。造成这种现象的原因主要是在激 光熔覆过程中 MoS<sub>2</sub>发生了分解,并与 Ni60 合金中 的 Cr 反应形成了 Cr<sub>x</sub>S<sub>y</sub> 化合物。文献[12-15]的研 究结果表明,Cr 与 S元素形成的不定比化合物 Cr<sub>x</sub>S<sub>y</sub> 既能在摩擦表面富集成膜,又能在对偶件表面形成转 移膜,因而具有良好的减摩性能。但由于大量的 Cr 与 S元素发生了反应,熔覆层中未能形成 Cr 的碳化 物和硼化物等硬质相,而在 Ni60 激光熔覆层中存在 大量的 Cr<sub>7</sub>C<sub>3</sub>和 CrB 相,这些硬质相尺寸细小,分布 均匀,对熔覆层起到了弥散强化作用,从而使熔覆层 具有较高的耐磨性能<sup>[16]</sup>。



图 5 H13 钢、Ni60 和 Ni60+Ni/MoS<sub>2</sub> 激光熔覆层的 (a)摩擦系数及(b)磨损体积比较

Fig. 5 (a) Friction coefficient and (b) wear volume of H13 steel, Ni60 coating and Ni60+Ni/MoS $_{\rm z}$  coating

### 3.3 磨损过程中 Cr<sub>x</sub>S<sub>y</sub> 润滑膜形成机制讨论

图 6(a)和(c)为激光熔覆层磨损表面不同区域 SEM 照片。从图 6(a)中可以看出,一些黑色颗粒显 露在磨损表面,EDS 分析证实黑色颗粒为 Cr<sub>x</sub>S<sub>y</sub> 化合 物[图 6(b),能谱图中的 C 来源于摩擦偶件元素转移 或涂层基体,而 O 来自摩擦副局部温升导致的氧化]。 从图 6(c)可以看出,磨损表面形成了局部黑色膜层, EDS 分析黑色膜层的主要成分为 S 和 Cr[图 6(d)], 表明其为 Cr<sub>x</sub>S<sub>y</sub> 化合物膜。

根据上述磨损表面形貌分析结果,推测磨损过程 中 Cr<sub>x</sub>S<sub>y</sub> 润滑膜的形成过程如下。在磨损初始阶段, 当熔覆层基体金属发生磨损后,处于熔覆层表层的 Cr<sub>x</sub>S<sub>y</sub>颗粒将"暴露"在摩擦表面,如图 7(a)所示。由于 Cr<sub>x</sub>S<sub>y</sub>的硬度和剪切强度较低,所以暴露在表面的 Cr<sub>x</sub>S<sub>y</sub>颗粒在摩擦作用下,将沿摩擦表面铺展,形成

局部润滑膜,如图 7(b)所示。当大量 Cr<sub>x</sub>S<sub>y</sub> 颗粒铺 展在摩擦表面时,便在摩擦表面形成了完整的润滑 膜,如图 7(c)所示。



图 6 (a)、(c)熔覆层不同区域的磨损表面形貌及(b)、(d)其 EDS 图谱 Fig. 6 (a), (c) Morphologies of different iones and (c), (d) their EDS spectra of wear surface



图 7  $Cr_x S_y$  自润滑膜的形成过程示意图 Fig. 7 Diagram showing the formation of  $Cr_x S_y$  self lubricant films

4 结 论

1) 以 Ni60+33%Ni/MoS2 混合粉末为熔覆材

料,利用激光熔覆过程中Cr与S元素之间的化学反应,获得了以原位自生Cr<sub>x</sub>S<sub>y</sub>为减摩相的Ni基自润

504.

滑复合涂层。

2)激光熔覆过程中原位自生的 Cr<sub>x</sub>S<sub>y</sub> 颗粒呈 近球状,尺寸在 5~20 μm 之间,其中尺寸较大的颗 粒多分布于熔覆层的上部,而尺寸较小的颗粒多分 布于熔覆层的中下部。

3)在磨损过程中 Cr<sub>x</sub>S<sub>y</sub> 颗粒将在磨损表面铺 展形成润滑膜,使涂层具有低而平稳的摩擦系数,但 涂层耐磨性能较 Ni60 涂层有所降低。

#### 参考文献

- 1 Yang Maosheng, Liu Xiubo, Fan Jiwei, et al.. Microstructure and wear behaviors of laser clad NiCr/Cr<sub>3</sub>C<sub>2</sub>-WS<sub>2</sub> high temperature self-lubricating wear-resistant composite coating[J]. Applied Surface Science, 2012, 258(8): 3757-3762.
- 2 He Xiangming, Liu Xiubo, Yang Maosheng, *et al.*. Elevated temperature tribological behaviors of laser cladding nickel-based composite coating on austenitic stainless steel [J]. Chinese J Lasers, 2011, 38(9): 0903007.

何祥明,刘秀波,杨茂盛,等.奥氏体不锈钢激光熔覆镍基复合涂层高温磨损行为[J].中国激光,2011,38(9):0903007.

- 3 A H Wang, X L Zhang, X F Zhang, et al.. Ni-based alloy/ submicron WS<sub>2</sub> self-lubricating composite coating synthesized by Nd: YAG laser cladding[J]. Materials Science and Engineering A, 2008, 475(1-2): 312-318.
- 4 Zhang Xiaofeng, Wang Aihua, Zhang Xianglin, et al.. Microstructure and tribological properties of laser cladding Ni45-CaF<sub>2</sub>-WS<sub>2</sub> self-lubrication coating[J]. The Chinese J Nonferrous Metals, 2008, 18(2): 215-220. 章小峰,王爱华,张祥林,等.激光熔覆 Ni45-CaF<sub>2</sub>-WS<sub>2</sub> 自润滑

涂层组织与性能 [J]. 中国有色金属学报, 2008, 18(2): 215-220.

5 Yang Jiaoxi, Liu Falan, Miao Xuanhe, *et al.*. Microstructure and tribology characteristics of TC4/Ni/MoS<sub>2</sub> self-lubrication coatings prepared by laser cladding [J]. Heat Treatment of Metals, 2011, 36(8): 93-96.

杨胶溪,刘发兰,缪宣和,等.激光熔覆 TC4/Ni/MoS<sub>2</sub> 自润滑涂 层的组织与摩擦学特性[J].金属热处理,2011,36(8):93-96.

6 Niu Wei, Sun Ronglu. Effect of h-BN content on microstructures and wear resistance of laser cladding self-lubricant coatings[J]. Chinese J Lasers, 2011, 38(8): 0803011.
牛 伟,孙荣禄. h-BN 含量对激光熔覆自润滑涂层微观组织和

磨损性能的影响[J]. 中国激光, 2011, 38(8): 0803011. 7 Zhang Shitang, Zhou Jiansong, Guo Baogang, et al..

Preparation and characterization of reactively sintered Ni<sub>3</sub>AlhBN-Ag composite coating on Ni-based superalloy[J]. J Alloys and Compounds, 2009, 473(1-2): 462-466.

8 Zhang Xiaofeng, Wang Aihua, Zhang Xianglin, et al.. Microstructure and properties of laser clad nano-Ni-encapsulated h-BN/CaF<sub>2</sub> composite coating [J]. J Huazhong University of Science and Technology (Natural Science Edition), 2009, 37(1): 9-13.

章小峰,王爱华,张祥林,等.激光熔覆 Ni 基纳米 Ni 包 h-BN/ CaF<sub>2</sub> 涂层组织性能[J].华中科技大学学报(自然科学版), 2009,37(1):9-13.

- 9 Wengang Liu, Xiubo Liu, Zhenguo Zhang, et al.. Development and characterization of composite Ni-Cr-C-CaF<sub>2</sub> laser cladding on γ-TiAl intermetallic alloy[J]. J Alloys and Compounds, 2009, 470(1-2): L25-L28.
- 10 Xiubo Liu, Shihong Shi, Jian Guo, *et al.*. Microstructure and wear behavior of  $\gamma/Al_4C_3/TiC/CaF_2$  composite coating on  $\gamma$ -TiAl intermetallic alloy prepared by Nd: YAG laser cladding [J]. Applied Surface Science, 2009, 255(11); 5662-5668.
- 11 Liu Xiubo, Liu Yuanfu, Mu Junshi, *et al.*. Laser cladding for high-temperature self lubrication wear resistant composite coatingd on γ-TiAl intermatallic alloy [J]. Tribology, 2009, 29(6): 499-504.
  刘秀波,刘元富,穆俊世,等. γ-TiAl 合金激光熔覆高温自润滑 耐磨复合材料涂层研究[J]. 摩擦学学报, 2009, 29(6): 499-

12 Wang Zhensheng, Zhou Lanzhang, Guo Jianting, et al.. Friction and wear behavior of NiAl-Cr(Mo) - Cr<sub>x</sub>S<sub>y</sub> self-lubricating composite[J]. Tribology, 2010, 30(6): 589-595. 王振生,周兰章,郭建亭,等. NiAl-Cr(Mo)-Cr<sub>x</sub>S<sub>y</sub> 自润滑复合 材料的摩擦磨损特性[J]. 摩擦学学报, 2010, 30(6): 589-595.

- 13 Kan Cunyi, Liu Jinzhu, Zhang Guowei, *et al.*. Preparation and tribological performance of a Ni-Cr-S alloy[J]. Tribology, 1994, 14(3): 193-204.
  阚存一,刘近朱,张国威,等. 一种 Ni-Cr-S 合金的研制及其摩 擦学特性[J]. 摩擦学学报, 1994, 14(3): 193-204.
- 14 Meng Junhu, Lü Jinjun, Wang Jingbo, et al.. Study on friction and wear properties of several Ni-based alloys in sliding against Co-WC at elevated temperature[J]. Tribology, 2002, 22(3): 184-188.

孟军虎,吕晋军,王静波,等.两种镍基合金的高温摩擦学性能研究[J]. 摩擦学学报,2002,22(3):184-188.

- 15 Li Jianliang, Xiong Dangsheng, Huo Mingfeng. Friction and wear properties of Ni-Cr-W-Al-Ti-MoS<sub>2</sub> at elevated temperatures and self-consumption phenomena[J]. Wear, 2008, 265(3-4): 566-575.
- 16 Yuan Qinglong, Feng Xudong, Cao Jingjing, et al.. Research on microstructure of Ni-based alloy coating by laser cladding [J]. Chinese J Lasers, 2010, 37(8): 2116-2120. 袁庆龙, 冯旭东, 曹晶晶,等. 激光熔覆镍基合金涂层微观组织 研究[J]. 中国激光, 2010, 37(8): 2116-2120.

栏目编辑: 宋梅梅